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Abstract: In this work, FORTTRAN program has been applied to evaluate the energy level of generally small atomic 
systems. The program was specifically directed to compute the Hartree-Fock equations. The ground state 
structures of small atomic systems are obtained using Hartree-Fock approximation. The total energies 
calculated for each of the state (1s, 2s, 2p) approximately agreed with those of experimental results as 
compared. Due to non-linearities introduced by Hartree-Fock approximation, the equations are solved using 
non-linear method such as iteration. The physical implication of this important finding has helped to identified 
clearly the parameter space accessible to the Hartree-Fock method. 
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Introduction 
In computational Physics and computational chemistry the 
Hartree-Fock (HF) method is an approximation method for 
determination of the ground-state wave function and 
ground state energy of a quantum many-body system 
(Nesbet, 2003). The Hartree-Fock method assumes that the 
exact N-body wave function of the system can be 
approximated by a single slater determinant where the 
particles are fermions or by a single permanent if the 
particles are bosons of N spin-orbitals. Invoking the 
variational principle one can derive a set of N coupled 
equations for the N spin-orbitals. Solution of these 
equations yield the Hartree-Fock wave function and 
energy of the system, which are approximations of the 
exact ones (Adhikari, 1998). The Hartree-Fock method 
finds its typical application in the solution of the electronic 
Schrodinger equation of atoms, molecules and solids but it 
has also found widespread uses in nuclear Physics (Gray, 
1996). This thesis will focus on applications in electronic 
structure theory. 
Analytically, it is difficult to solve many-quantum system. 
In this work we shall develop a FORTRAN program that 
will enhance the determination of electronic structure and 
energies of light atomic system. The aim of this work is to 
solve the Hartree-Fock equations using the following 
objectives: Determine the ground state structure of small 
atomic system, develop a computer program (FORTRAN) 
to compute the total energies of the states (1s, 2s, 2p), 
compare the result with those of experiments. In the sense 
that, one could reproduce fairly well the observed 
transitions level observed in the X-ray region. The 
existence of a non-zero quantum defect was attributed to 
electron-electron repulsion which clearly does not exist in 
the isolated hydrogen atom. This repulsion resulted in 
partial screening of the bare nuclear charge. These early 
researchers later introduced other potentials containing 
additional empirical parameters with the hope of better 
reproducing the experimental data. Hartree sought to do 
away with empirical parameters and solve the many-body 
time independent Schrödinger equation from fundamental 
physical principals (Veillard, 2006). 
The Hartree-Fock (HF) method is a variational method 
that provides the wave function of a many-body system 
assumed to be in the form of a slater determinant for 
fermions and a product wave function for bosons. It treats 
correctly the statistics of the many-body system, 
antisymmetry for fermions and symmetry for bosons under 
the exchange of particles. The variational parameters of 

the method are the single-particle wave function 
composing the many-body wave function (Froese, 1997). 
Ring (2000), found out that the total energy EHF is not 
equal to the sum of the single-particle energies; these 
energies include a term generated by the two-body 
interaction of a given particle with all the others. When the 
single-particle energies are added, the interactions are 
counted twice. The two–body interaction depends for 
some systems on the local density of particles. This is 
often the case in nuclear Physics, where this density 
dependence can be justified by elimination of the very 
repulsive core of most bare nucleon-nucleon interaction. 
Doves (1987), calculated the electronic structure of �-
quartz using the periodic Hartree-Fock method and found 
out that the cluster type calculations on molecules such as 
H6Si207 accurately reproduce the charge density in the 
neighborhood of the bridging oxygen. Geometry 
optimizations yield realistic values of the SiO bond length 
and of the SiOSi angle. Gray et al. (2003) observed 
characteristic maximum and minimum in the one- electron 
radial density demonstrating the shell structure of atoms. It 
becomes necessary for the quest of knowledge to study the 
electronic structure of many-quantum systems using 
Hartree-Fock approximation method. Meanwhile other 
approximation methods can as well be employed in 
executing this same task in any further research.     
 
Materials and Methods 
The Hartree-Fock method is typically used to solve the 
time-independent Schrödinger equation for a multi-
electron atom or molecule as described in the Born-
Oppenheimer approximation. Since there are no known 
solution for many-electron systems (hydrogenic atoms and 
the diatomic hydrogen cat ion being notable one-electron 
exceptions), the problem is solved numerically. Due to the 
nonlinearities introduced by the Hartree-Fock 
approximation, the equations are solved using a nonlinear 
method such as iteration, which gives rise to the name 
“self-consistent field method” (Tinkham, 2003). 
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In this expression, the one-body matrix elements of the 
kinetic energy are    
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The electron density is the sum of single-particle densities, 
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The electrostatic potential generation by the electrons is  
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             So that, 
 %	ᶲ � �4,(	����,            . . .  (5) 

            And the exchange matrix elements of the inter-
electron repulsion are 
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The interpretation of the various terms in Equation (1) is 
straightforward. The kinetic energy is the sum of the 
kinetic energies of the single particle orbitals, while the 
electron-nucleus attraction and direct inter-electron 
repulsion are just what would be expected from a total 
charge of – N distributed in space with density����. The 
final term in equation (1) is the exchange energy, which 
arises from the anti-symmetry of the trial wave. It is a sum 
over all pairs of orbital with the same spin projection; pairs 
of orbitals with different spin projections are 
“distinguishable” and therefore do not contribute to this 
term. 
The two-electron problem 
For two electrons that don’t interact with each other, the 
ground state of their motion around a nucleus in the 1s2 
configuration; that is, both electrons are in the same real, 
spherically symmetric spatial state, but have opposite spin 
projections. It is therefore natural to take a trial wave 
function for the interacting system that realizes this same 
configuration; the corresponding two single-particle wave 
functions are 
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So that many-body wave functions Equation (3.9 
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This trial wave function is anti-symmetric under the 
interchange of the electron spins but is symmetric under 
the interchange of their space coordinates. It respects the 
Pauli principle, since it is anti symmetric under the 
interchange of all variables describing the two electrons. 
The normalization condition Equation (4) becomes. 

 0	����� = 1∝
7             . . .    (9)  

While the energy Equation (1.1) becomes 
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With equation (1.1) reduces to 
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And equation (1.5b) becomes 
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Where: α is the Bohr radius. The energy Equation (12) is 
then minimized as a function of Z* to find an approximate 
to the wave function and energy.  
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In carrying out this minimization, it is amusing to note that 
the kinetic energy scales as Z*2, which all of the potential 
energies scale as Z*, so that, at the optimal Z*, the kinetic 
energy is – ½ of the potential. This is a specific case of a 
more general viral theorem pertaining to the Hartree-Fock 
approximation (Ismail, 1992). See Step 1 below. 

�D� − 2E  0	��∞
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Where E is a Lagrange multiplier to be determined after 
variation so that the solution is properly normalized. The 
standard techniques of variational calculus then lead to  
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Which is satisfied if resolves the Schrödinger-like equation 
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Choosing ε (the “single-particle energy”) to be an 
eigenvalue of the single-particle Hamiltonian appearing in 
Equation (17) ensures that R is normalizable. Equations 
(12, 17) are the two coupled non-liner differential equation 
in one dimension that forms the Hartree-Fock 
approximation to the original six-dimensional Schrodinger 
equation. Note that only one-half of φ appears in equation 
(17) since each electron interacts only with other and not 
“with itself” (Ismail, 1992). 
Many electron systems 
In many-electron systems, spherical symmetry of the 
density and potential are by no means guaranteed. In 
principle, non-spherical solutions should be considered, 
and such “deformed” wavefunctions are in fact the optimal 
ones for describing the structure of certain nuclei (Dill, 
2006). 
To understand what the problem is, let us assume that the 
potential φ is spherically symmetric. The solutions to the 
single particle Schrödinger equation in such a potential are 
organized into “shells”, each characterized by an orbital 
angular momentum, I, and a radial quantum number, n. 
within each shell, all 2 (2l + 1) orbital associated with the 
various values of σα and the projection of the orbital 
angular momentum, m, are degenerate. The orbital have 
the form; 

=���� = �
� 0IJ���KJ
��̂�;  0IJ	 ����� = 1∞

7  . . .  (18) 

 Thus, we introduce the number of electrons in each shell, 
Nnl, which can take on integer value between 0 and 2 (2l + 
1), and using the wave functions Equation (18), write the 
density Equation (1) as;  
���� = �
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∞
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In writing this expression, we have used the identity 
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In the same spirit, the energy functional Equation can be 
generalized to open-shell situation as;  

� = ∑ MIJ
ђ

�

	
  P�9:QR
9� �	 + J�JS��

�� 0IJ	 T �� +∞

7IJ

 �− ���
� + �

	 ᶲ���� ����4,�	�� + ��U
∞

7    . . .   (20a)  

With the exchange energy being  
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In this expression, I is the integral 
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Where r < and r > are the smaller and larger of r and r’ 
and the 3-j symbol vanishes when I + I’ + λ is odd. 
 
Lagrange multipliers EIJ are introduced to keep each of the 
radial wave function normalized and, after some algebra, 
we have  
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The eigen value equation (22a) can be seen to be 
analogous to Equation (17) for the two-electron problem, 
excerpt that the exchange energy has introduced a non-
locality (Fock potential) embodied in F and has coupled 
together the eigen value equations for each of the radial 
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wave functions; it is easy to show that these two equations 
are equivalent when there is a single orbital with I = 0. It is 
useful to note that equation (22b, 22b) imply that the 
exchange energy can also be written as 
��U � 1 2H ∑ MIJ  0IJ��� ÌJ�����,∞

7IJ        . . .    (23a) 
And that, by multiplying Equation (20a) by Rnl and 
integrating we can express the single     
Particle eigen value as (Ismail, 1992). 

EIJ = ђ
�

	
  P�9:QR
9� �	 + J�JS��

�� 0IJ	 T �� +  �− ���
� +∞

7
∞

7
ᶲ���� 0IJ	 ���`�����...(23b) 

 
Numerical analysis 
For the numerical solution of the Hartree-Fock equations, 
we must first adopt a system of units. For comparison with 
experimental value, it is convenient to measure all lengths 
in Angstroms and all energies in electron volts. If we use 
the constants, 

ђ
	

e = 7.6359(l − m�;   ����-.-7n�o)m, 
Then the Bohr radius and Rydberg constants have their 
correct values, 

� = ђ
	

e(	 = 0.5299p;   0q = (	
2� = 13.595(l. 

 
The attacks can be made through the following sequence 
of steps: 
Step 1: Verify the algebra leading to the final equations 

presented above for the two-electron system 
(Equations (10, 12, and 17)) and for the multi-
electron system (Equations (12, 20, 22)) have 
proved the viral theorem that the kinetic energy is 
-½ of the potential energy. This can be done by 
imagining that the single-particle wave functions 
of a solution to the Hartree-Fock equations are 
subjected to a norm-preserving scaling 
transformation, 

=���� → s� 	H =�ss�             . . .   (24) 
Where τ is a dimensionless scaling parameter, 
show that the total kinetic energy in Equation 
scales as τ2, while all of the potential energies 
scale as τ. Since the energy at the Hartree-Fock 
solution is stationary with respect to any variation 
of the wave functions. 

Step 2: Write a program to calculate the energy from 
Equation (10) if R is known at all if the lattice 
points. This will require writing a sub-routine that 
calculates φ by solving Equation (12) and then 
evaluating suitable quadrature for the various 
terms in Equation (19). Verify that the program is 
working by calculating the energies associated 
with the hydrogenic orbital Equation (13) and 
comparing it with the analytical results 
(remember to normalize the wave function by the 
appropriate discretization of Equation (18). 

Step 3: Write a subroutine that uses the shooting method 
to solve the radial equation for the lowest eigen 
value and corresponding normalized wave 
function R if the potential is given at the lattice 
point. The zero boundary condition at large 
distances can be taken as R (r = L) = 0, where L is 
the outer end of the lattice. (Greater accuracy, 
particularly for weakly bound states, can be had 
by imposing instead an exponential boundary 
condition at the outer radius). Note that the radial 
scale (i.e., R and the radial step size) should 
change with the strength of the central charge. 

Verify that the subroutine works by setting φ and 
0 and comparing, for Z = 2 and Z= 4, the 
calculated wave function, eigen value, and energy 
of the 1s orbital with the analytical hydrogenic 
values. 

Step 4: Combine the subroutines developed in Steps 2 
and 3 into a code that, given a value of Z, solves 
the two electron Hartree-Fock equations of 
iteration. An iteration scheme is as follows, the 
organization into subroutines being obvious: 
i) “Guess” an initial wave function, says the 

hydrogenic one Equation (13) with the 
appropriate value of Z*. 

ii)  Solve Equation (12) for the potential 
generated by the initial wave function and 
calculated the total energy of the system 
from Equation (19) 

iii)  Find a new wave function and its eigen 
value by solving Equation (19) and 
normalizing according to Equation (9) 

iv) Calculate the new potential and new total 
energy. Then go back to (iii) and repeat 
(iii) and (iv) until the total energy has 
converged to within the required 
tolerance.  

At each iteration, the eigen value, the total energy 
and the three separate contributions to the energy 
appearing in Equation (10) should be printed out; 
a plot of the wave function is also useful for 
monitoring the calculation. Note that the total 
energy should decrease as the iterations proceed 
and will converged relatively quickly to a 
minimum. The individual contributions to the 
energy will take longer to settle down, consistent 
with the fact that it is only the total energy that is 
stationary at the variational minimum, not the 
individual components; at convergence, the viral 
theorem discussed in Step 1 should be satisfied. 
Try beginning the iteration procedure with 
different single-particle wave functions and note 
that the converged solution is still the same. Vary 
the values of the lattice spacing and the boundary 
radius, L, and the certain that the results are stable 
under these changes. 

Step 5: Use the program to solve the Hartree-Fock 
equations for central charges Z = 1–9. Compare 
the total energies obtained with the experimental 
values given in N = 2 column of Table 3 (These 
binding energies, which are the negative of the 
total energies, are obtained from the measured 
ionization potentials of atoms and ions); 
comparing the results alsp with the wave 
functions and associated variational energies 
given by Equations 13 and 14. Note that both 
approximations should give upper bounds to the 
exact energy. 
It shows that for Z = 1, the Hartree-Fock 
approximation predicts that the H ion is unbound 
in that its energy is greater than that off the H 
atom and so it is energetically favorable to shed 
the extra electron. As can be seen from Table 3, 
this is not the case in the real world. In finding the 
Z=1 solution, it is discovered that convergence is 
quite a delicate business; it is very easy for the 
density to change so much from iteration to 
iteration that the lowest eigen value of the single-
particle Hamiltonian becomes positive. One way 
to alleviate this problem is to prevent the density 
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from changing too much from one iteration to the 
next, for example by averaging the new density 
and the old following step iii) above. 

Step 6: Modifies the two-electron program to treat 
systems in which several orbitals are involved. It 
is easiest first modify the calculation of the total 
energy for a given set of radial wave functions to 
include Eex. This is most conveniently done by 
calculating and storing the Fnl of Equation (22b) 
and using Equation (23). Because of the Fock 
term, the Eigen value equations (22a) cannot be 
treated by the shooting method we have 
discussed. However, one scheme is to treat the Fnl 
calculated from the previous set of wave functions 
as an inhomogeneous term in solving for the new 
set of wave functions. For trial values of the εnl 
calculated from Equation (24) using the previous 
set of wave functions, Equation (22) can be 
solved as uncoupled inhomogeneous boundary 
value problems using the Green’s function 
method of Equation (12); after normalization 
according to Equation (18), the solutions serve as 
a new set of wave functions. The two-electron 
systems can be used to check the accuracy of the 
modifications; for these systems it is found that 
the exchange energy is – ½ of the direct inter-
electron interaction energy and that the solutions 
converge to the same results as those generated by 
the code in Step 1 (Ismail, 1992). 

 

 

Fig. 1: A simplified algorithm flowchart illustrating the 
Hartree-Fock method 
 
Input parameters for the design 

Z – Nuclear charge 
NOCC – number of electrons in each state (1s, 2s, 2p) 
DR – radial step size (Angstroms) 
NITER – number of iterations 

Outputs parameters 
Ktot – total kinetic energy 
Ven – electron-nuclei 
Vee – electron-electron energies 
Vex – exchange energies 
Vtot – total potential energy 
Etot – total energies 
Vex – exchange energies 
Vtot – total potential energies 
Etot – total energies 

 
Results and Discussion 
The computed value of the total kinetic energies, total 
potential energies, electron-electron energies, exchange 
energies and the total energies of each of the state are 
shown in Table 1 (Iteration 0 – 19). HARTREE-FOCK 
solutions of small atomic systems in the filling 
approximation; Hartree-ock solutions for small atomic 
systems: Nuclear charge = 6.000, zstar = 5.067, Rmax 
(Angstroms) = 2.000, radial step (Angstroms) = 1.0000E-
01, Occupations of the states are:  2 2 2 All energies are in 
eV. 
 
Table 1: Total energies of each state (Iteration 0 – 19) 

………………….Iteration 0……………… 
State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 252.141 -641.960 285.923 -90.984 -447.021 -194.881 
2s 2 68.715 -180.857 141.035 -27.404 -67.225 1.490 
2p 2 85.703 -206.831 160.586 -16.851 -63.096 22.608 

Total 6 813.119 -2059.295 587.544 -135.238 -1606.989 -793.870 

 
……….Iteration 1………….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 201.535 -585.033 256.602 -78.792 -407.222 -205.688 
2s 2 39.240 -138.558 110.725 -20.741 -48.574 -9.334 
2p 2 60.102 -171.316 132.812 -13.231 -51.735 8.367 

Total 6 601.753 -1789.813 500.140 -112.764 -1402.438 -800.685 

 

……….Iteration 2………. 
State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 193.484 -574.589 239.612 -76.06 -411.307 -217.823 
2s 2 30.196 -122.765 98.157 -18.712 -43.319 -13.124 
2p 2 48.588 -152.666 116.89 -11.697 -47.472 1.116 

Total 6 544.537 -1700.580 454.66 -106.469 -1352.389 -807.852 

 
………Iteration 3………….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 194.049 -575.535 231.135 -75.969 -420.368 -226.319 
2s 2 29.356 -121.359 95.243 -18.58 -44.696 -15.34 
2p 2 45.162 -146.751 110.667 -11.288 -47.372 -2.209 

Total 6 537.135 -1687.288 437.045 -105.836 -1356.079 -818.945 

 
……….Iteration 4……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 195.891 -577.839 226.479 -76.188 -427.548 -231.657 
2s 2 30.136 -123.06 94.772 -18.852 -47.14 -17.004 
2p 2 0.886 -139.233 105.141 -10.829 -44.921 -4.032 

Total 6 533.833 -1680.265 426.393 -105.87 -1359.742 -825.909 

 
……….Iteration 5……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 197.442 -579.769 225.146 -76.662 -431.245 -233.803 
2s 2 31.006 -124.956 95.333 -19.105 -48.728 -17.661 
2p 2 41.931 -141.247 105.613 -10.984 -46.618 -4.687 

Total 6 540.879 -1691.943 426.092 -106.711 -1372.562 331.684 

 
……….Iteration 6……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.162 -580.663 225.132 -76.869 -432.4 -234.238 
2s 2 31.79 -126.339 96.039 -19.285 -49.585 -17.796 
2p 2 43.035 -143.289 106.617 -11.134 -47.806 -4.771 

Total 6 545.973 -1700.583 427.788 -107.289 -1380.083 -834.11 

 
……….Iteration 7……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.405 -580.965 225.389 -76.965 -432.541 -234.136 
2s 2 32.171 -127.041 96.489 -19.376 -49.928 -17.756 
2p 2 43.506 -144.144 107.155 -11.198 -48.188 -4.682 

Total 6 548.163 -1704.301 429.034 -107.539 -1382.806 -834.643 

 
……….Iteration 8……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

Input 
3D coordinates 
of atomic nuclei 

Initial guest 
Molecular Orbitals 
(I-electron Vectors 

Fock Matrix 
Formation 

Fock Matrix 
Diagonalization 

SCF 
Converge

d 

Calculate 
Properties 

 
End 
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1s 2 198.459 -581.033 225.574 -76.988 -432.447 -233.988 
2s 2 32.31 -127.289 96.687 -19.408 -50.010 -17.700 
2p 2 43.592 -144.297 107.32 -11.211 -48.189 -4.597 

Total 6 548.722 -1705.239 429.581 -107.607 -1383.266 -834.544 

 
……….Iteration 9……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.46 -581.035 225.656 -76.988 -432.367 -233.907 
2s 2 32.336 -127.333 96.744 -19.413 -50.003 -17.667 
2p 2 43.556 -144.231 107.329 -11.207 -48.109 -4.553 

Total 6 548.706 -1705.199 429.729 -107.609 -1383.078 -834.373 

 
……….Iteration 10……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.454 -581.027 225.679 -76.985 -432.333 -233.897 
2s 2 32.328 -127.318 96.748 -19.411 -49.981 -17.653 
2p 2 43.515 -144.155 107.305 -11.202 -48.052 -4.537 

Total 6 548.595 -1705.001 429.739 -107.598 -1382.867 -834.271 

 
……….Iteration 11……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.45 -581.023 225.68 -76.982 -432.326 -233.875 
2s 2 32.318 -127.299 96.741 -19.409 -49.966 -17.648 
2p 2 43.494 -144.116 107.288 -11.199 -48.027 -4.533 

Total 6 548.524 -1704.875 429.708 -107.59 -1382.757 -834.232 

 
……….Iteration 12……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.676 -76.982 -432.327 -233.878 
2s 2 32.312 -127.288 96.735 -19.407 -49.96 -17.648 
2p 2 43.487 -144.103 107.28 -11.198 -48.021 -4.534 

Total 6 548.497 -1704.826 429.692 -107.587 -1382.721 -834.224 

 
……….Iteration 13……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.673 -76.981 -432.329 -233.88 
2s 2 32.31 -127.284 96.733 -19.407 -49.958 -17.648 
2p 2 43.487 -144.102 107.279 -11.198 -48.021 -4.534 

Total 6 548.491 -1704.815 429.686 -107.586 -1382.712 -834.224 

 
……….Iteration 14……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.283 96.732 -19.407 -49.957 -17.648 
2p 2 43.488 -144.104 107.279 -11.198 -48.023 -4.535 

Total 6 548.492 -1704.817 429.684 -107.586 -1382.719 -834.227 

 
……….Iteration 15……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.283 96.732 -19.407 -49.958 -17.648 
2p 2 43.48 -144.106 107.28 -11.198 -48.024 -4.535 

Total 6 548.493 -1704.82 429.684 -107.586 -1382.721 -834.228 

 
……….Iteration 16……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648 
2p 2 43.489 -144.106 107.28 -11.198 -48.024 -4.535 

Total 6 548.495 -1704.822 429.685 -107.586 -1382.723 -834.229 

 
 

……….Iteration 17……….. 
State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648 
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535 

Total 6 548.495 -1704.823 429.685 -107.586 -1382.724 -834.229 

 
 
 

……….Iteration 18……….. 
State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648 
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535 

Total 6 548.495 -1704.823 429.685 -107.586 -1382.724 -834.229 

 
……….Iteration 19……….. 

State Nocc Ktot Ven Vee Vex Vtot Etot 

1s 2 198.449 -581.021 225.672 -76.981 -432.33 -233.881 
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648 
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535 

Total 6 548.495 -1704.823 429.686 -107.586 -1382.723 -834.228 

 
 
Table 2: The total energies of neutral atoms calculated 
with the relativistic Beit Pauli method by Fraga, 
Karkowski and Saxena and with the HartreeFock-
Dirac formalism by Desclaux (Levente, 1991) 
Atom Z �t: EB �u ∆�t:% ∆�tx% 

He 2 2.86137 2.86169 2.86169 -0.01 0.002 

Li 3 7.43269 7.43327 7.43273 -0.0005 0.007 

Be 4 14.57434 14.5752 14.57303 0.009 0.01 

B 5 24.53397 24.5350 24.52906 0.02 0.02 

C 6 37.70068 37.6732 37.68866 0.03 -0.04 

N 7 54.42602 54.3229 54.40098 0.05 -0.14 

O 8 74.85626 74.8172 74.80947 0.06 0.01 

∆�t: � 100 ytc)yz
ytc

; ∆�tx � 100 yt{)yz
yt{

;  �t: � Resultant energy; ER= 

the relativistic correction energy; EF = the non-relativistic HF 
energy; EB = Total energy 

 
Table 3: Binding energies (in eV) of small atomic 
system by Ismail (1992) 
Z 2 3 4 5 6 7 8 

1 3.34       
2 78.88       
3 198.04 203.43      
4 371.51 389.71 399.03     
5 599.43 637.35 662.49 670.79    
6 881.83 946.3 994.17 1018.55 1029.81   
7 1218.76 1316.62 1394.07 1441.19 1471.09 1485.19  
8 1610.23 1743.31 1862.19 1939.58 1994.47 2029.58 2043.19 
9 2054.8 2239.05 2397.05 2511.27 2598.41 2661.05 2696.03 

 
Table 4: The density as a function of (r) for different 
states (1s, 2s, 2p) 
Densities         The distance (r) 
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1.00E-01 8.47E.00 3.91E-01 1.06E-01 9.18E+00   
2.00E-01 7.15E.00 1.08E-01 5.31E-01 7.87E+00 
3.00E-01 3.01E+00 6.24E-02 1.11E+00 4.43E+00 
4.00E-01 9.83E-01 6.10E-01 1.63E+00 3.60E+00 
5.00E-01 2.85E-01 1.38E+00 1.98E+00 4.00E+00 
6.00E-01 7.81E-02 2.02E+00 2.15E+00 4.48E+00 
7.00E-01 2.09E-02 2.40E+00 2.16E+00 4.65E+00 
8.00E-01 5.60E-03 2.51E+00 2.06E+00 4.50E+00 
9.00E-01 1.54E-03 2.40E+00 1.88E+00 4.09E+00 
1.00E+00 4.46E-04 2.14E+00 1.65E+00 3.55E+00 
1.10E+00 1.38E-04 1.80E+00 1.39E+00 2.93E+00 
1.20E+00 4.59E-05 1.43E+00 1.12E+00 2.32E+00 
1.30E+00 1.66E-05 1.08E+00 8.57E-01 1.74E+00 
1.40E+00 6.35E-06 7.57E-01 6.16E-01 1.22E+00 
1.50E+00 2.51E-06 4.87E-01 4.05E-01 7.85E-01 
1.60E+00 9.64E-07 2.74E-01 2.32E-01 4.43E-01 
1.70E+00 3.22E-07 1.21E-01 1.05E-01 1.97E-01 
1.80E+00 6.67E-08 3.02E-02 2.64E-02 4.95E-02 
1.90E+00 0.00E+00 0.00E+00 0.00E+00 2.37E-04 

 
In connection with the total energies of atoms, calculation 
based on the Hartree-Fock method and calculation based 
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on the Briet-Pauli procedure lead to the same results in 
very good approximation as shown in Tables 1 and 2. 
For the radial densities the Hartree-Fock method gives a 
good picture of the electron distribution inside an atom by 
providing the one electron wave function. By providing 
accurate one-electron wave functions, the Hartree-fock 
method produces a quantity that is vitally important in 
many molecular and solid state calculations, besides 
providing the explanation of such fundamental properties 
as the shell structure of atoms. 
The one-electron radial density in Fig. 1 shows 
characteristic maxima and minima, demonstrating the shell 
structure of atoms. The curves shows that in the area in 
which a maximum occurs, there is high concentration of 
electron density, that is, the electron density is 
concentrated in shell; a shell is the volume between two 
spheres with radii that are slightly smaller and larger than 
the radius at which a maximum is located. The graph itself 
shows the image of atom. This agrees with Gray et al. 
(2003).  
 

 
Fig. 1: The one–electronic radial desinties of the 1s, 2s, 
and 2p electrons in the carbon atoms (Z =G) 
 
The Hartree-fock method shows all atoms have the same 
image, that is, all atoms show the characteristic maxima 
and minima in their densities. The maxima signify the 
presence of shell in the electronic structure of atoms. Gray 
et al. (2003) also found this in his work. 
 
Conclusion 
However, these results, and similar results for other atoms, 
show only that the total energy can be reproduced with a 
high accuracy with simple expressions for the wave 
functions. The results do not mean that other quantities, 
like the total radial density, come out accurately from such 
calculations. These results are just the demonstration of a 
theorem of quantum mechanics according to which a poor 

trial function can give very good results for the total 
energy in a variational calculation. 
For the chosen atom (carbon) the total energy at 2p state in 
iteration of Table 1 is approximately the same as compared 
with that of Table 2 which Breit – Paul procedure for the 
carbon atom. Slightly large number of iteration is required 
to get the approximate value of the total energy (Etot) of 
each of the states. Finally from Tables 1 and 2 the error in 
the Hartree-Fock energy of atom as compared is less or 
only about one percent. Levente (1991) also observed this 
in his work. 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Hartree-Fock solution of small atomic systems in the  
c             filling approximation 
c        COMPUTATIONAL PHYSICS (FORTRAN VERSION) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
     CALL INIT        !display header screen, setup parameters 
5        CONTINUE              !main loop/ execute once for each set of param 
             CALL PARAM        !get input from screen 
           CALL ARCHON       !find the Hartree-Fock wave functions 
     GOTO  5 
     END 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
                   SUBROUTINE ARCHON 
C     find the Hartree-Fock wave function for the specified atom 
Cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C Global variables: 
            INCLUDE  ‘IO.ALL’ 
            INCLUDE   ‘PARAM.P3’ 
C    Local variables: 
             REAL E(MAXSTT+1, 8)                          !all energies of all states 
REAL FOCK (0: MAXSTP, MAXSTT)        !Fock terms 
           REAL RHO (0: MAXSTP)                          !density 
REAL   PSTOR (0: MAXSTP, MAXSTT)               !radial wave function 
REAL PHI (0: MAXSTP)                                         !electron potential 
           REAL ESP                                                    !single particle energy of state 
          INTEGER ITER                                             !iteration index 
          INTEGER STATE                                         !single particle state index 
          REAL ZSTAR                                                !optimal effective nuclear charge 
          INTEGER DEVICE                                        !current graphing device 
          INTEGER ISTOP, ISTART                            !current limits on iteration       
          INTEGER NLINES                                         !number of lines written to screen 
           INTEGER SCREEN                                       !send to terminal 
           INTEGER PAPER                                          !make a hardcopy 
          INTEGER FILE                                               !send to a file 
C   Functions 
INTEGER GETINT 
         DATA    SCREEN, PAPER/1, 2,3/ 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C       begin iterations with a good guess 
         Mix=1.                                                        !no old density to mix with new 
         ZSTAR=Z 
        CALL HYDRGN (ZSTAR, PSTOR)              !find hydrogenic wave functions 
        CALL ENERGY (E, FOCK, RHO, PSTOR)  !and energy 
C      optimal ZSTAR using virial theorem 
         ZSTAR=Z*(E (NSTATE+1, IVTOT)/(2*E(NSTATE+1,IKTOT))  
         CALL HYDRGN (ZSTAR PSTOR)             !find new hydrogenic wave functions 

 
 
 
 
 


