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Abstract: In this work, FORTTRAN program has been appliedalgate the energy level of generally small atomic
systems. The program was specifically directeddmpute the Hartree-Fock equations. The ground state
structures of small atomic systems are obtainedgusiartree-Fock approximation. The total energies
calculated for each of the state (1s, 2s, 2p) agmiadely agreed with those of experimental resaks
compared. Due to non-linearities introduced by ka&+~ock approximation, the equations are solvéngus
non-linear method such as iteration. The physioalication of this important finding has helpeddentified
clearly the parameter space accessible to thed¢aRock method.
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Introduction the method are the single-particle wave function
In computational Physics and computational chesniste ~ composing the many-body wave function (Froese, 1997
Hartree-Fock (HF) method is an approximation metlood  Ring (2000), found out that the total energy B not
determination of the ground-state wave function andequal to the sum of the single-particle energig®se
ground state energy of a quantum many-body systerenergies include a term generated by the two-body
(Nesbet, 2003). The Hartree-Fock method assumestiha interaction of a given particle with all the othevghen the
exact N-body wave function of the system can besingle-particle energies are added, the interastiare
approximated by a single slater determinant whéee t counted twice. The two-body interaction depends for
particles are fermions or by a single permanenthd some systems on the local density of particless Ti
particles are bosons of N spin-orbitals. Invokinge t often the case in nuclear Physics, where this tensi
variational principle one can derive a set of N pled dependence can be justified by elimination of tleeyv
equations for the N spin-orbitals. Solution of #es repulsive core of most bare nucleon-nucleon interac
equations yield the Hartree-Fock wave function andDoves (1987), calculated the electronic structufeao
energy of the system, which are approximationshef t quartz using the periodic Hartree-Fock method anohd
exact ones (Adhikari, 1998). The Hartree-Fock métho out that the cluster type calculations on molecslesh as
finds its typical application in the solution oktlelectronic =~ HgSi,0; accurately reproduce the charge density in the
Schrodinger equation of atoms, molecules and solid st neighborhood of the bridging oxygen. Geometry
has also found widespread uses in nuclear PhyGisy(  optimizations yield realistic values of the SiO Hdength
1996). This thesis will focus on applications ieattonic  and of the SiOSi angle. Gragt al. (2003) observed
structure theory. characteristic maximum and minimum in the one-tebec
Analytically, it is difficult to solve many-quantusystem.  radial density demonstrating the shell structuratofns. It

In this work we shall develop a FORTRAN program thatbecomes necessary for the quest of knowledge ty she

will enhance the determination of electronic stouetand  electronic structure of many-quantum systems using
energies of light atomic system. The aim of thisknig to ~ Hartree-Fock approximation method. Meanwhile other
solve the Hartree-Fock equations using the follgwin approximation methods can as well be employed in
objectives: Determine the ground state structursnodll executing this same task in any further research.

atomic system, develop a computer program (FORTRAN)

to compute the total energies of the states (1s2@% Materials and Methods

compare the result with those of experiments. tndénse  The Hartree-Fock method is typically used to sale
that, one could reproduce fairly well the observedtime-independent Schrodinger equation for a multi-
transitions level observed in the X-ray region. Theelectron atom or molecule as described in the Born-
existence of a non-zero quantum defect was atgibtt ~ Oppenheimer approximation. Since there are no known
electron-electron repulsion which clearly does exist in ~ solution for many-electron systems (hydrogenic a@amd

the isolated hydrogen atom. This repulsion resuited the diatomic hydrogen cat ion being notable onetela
partial screening of the bare nuclear charge. Tleesly  exceptions), the problem is solved numerically. Buéhe
researchers later introduced other potentials @dnta  nonlinearities  introduced by the  Hartree-Fock
additional empirical parameters with the hope oftdse approximation, the equations are solved using dimear
reproducing the experimental data. Hartree soughdat  method such as iteration, which gives rise to thena
away with empirical parameters and solve the maydyb  “self-consistent field method” (Tinkham, 2003).

time independent Schrédinger equation from fundaaten . _ ¢w ( 2 > _ze? 1 3 _

physical principals (Veillard, 2006). E=2a- almla +f[ r +2¢(r)]p(r)d

The Hartree-Fock (HF) method is a variational mdtho 1ynv =~ s r<aa' e a'a> ..

that provides the wave function of a many-body eyst 2~ %% =1 7“7 | ry _

assumed to be in the form of a slater determinant f !N this expression, the one-body matrix elementshef
fermions and a product wave function for bosongiets klnetlczenergy aré

correctly the statistics of the many-body system, <a|P_|a> = —LIX;(r)VZXa(r)d3r, e
antisymmetry for fermions and symmetry for bosondear zm zm
the exchange of particles. The variational pararaeté

The electron density is the sum of single-partildasities,
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p(r) = Xo-11X (NI E)
The electrostatic potential generation by the ebest is
#r) = e? [ —p(r)d?
So that,
V2= —4me?p(r), - (5)
And the exchange matrix elements of ithter-
electron repulsion are

<zxa aa> =e?[X; (r’)

The interpretation of the various terms in Equatfihis
straightforward. The kinetic energy is the sum bét
kinetic energies of the single particle orbitaldjile the
electron-nucleus attraction and direct inter-etactr
repulsion are just what would be expected from tal to
charge of —-N distributed in space with densitgr). The
final term in equation (1) is the exchange energlich
arises from the anti-symmetry of the trial wavesla sum
over all pairs of orbital with the same spin prdi@e; pairs
of orbitals with different spin projections are
“distinguishable” and therefore do not contribute this
term.

The two-electron problem

For two electrons that don't interact with eacheoththe
ground state of their motion around a nucleus & 18
configuration; that is, both electrons are in thens real,
spherically symmetric spatial state, but have ojppapin
projections. It is therefore natural to take altmave
function for the interacting system that realizeis same
configuration; the corresponding two single-paeticlave
functions are

Y(X) =

I dr(r) -4 ”mjr — 4% 4 26(r) — 4¢| R()dr =0,.... (16)
Which is satisfied if resolves the Schrédinger-idguation

@ [”—d—2—1+ N GE s]R(r) =0... (17)

Choosing ¢ (the “single-particle energy”) to be an
eigenvalue of the single-particle Hamiltonian appeain
Equation (17) ensures that R is normalizable. Equoati
(12, 17) are the two coupled non-liner differenégliation

®) in one dimension that forms the Hartree-Fock
approximation to the original six-dimensional Sainger
equation. Note that only one-half @fappears in equation
(17) since each electron interacts only with otied not
“with itself” (Ismail, 1992).

Many electron systems

In many-electron systems, spherical symmetry of the
density and potential are by no means guaranteed. |
principle, non-spherical solutions should be coesd,
and such “deformed” wavefunctions are in fact themoal
ones for describing the structure of certain nuélil,
2006).

To understand what the problem is, let us assumatethie
potentiale is spherically symmetric. The solutions to the
single particle Schrédinger equation in such amakare
organized into “shells”, each characterized by doital
angular momentum, |, and a radial quantum number, n
within each shell, all 2 (21 + 1) orbital associhtgith the
various values ofsa and the projection of the orbital
angular momentum, are degenerate. The orbital have
the form;

Xa(T') _Rnl(r)ylm(r) f R l(T')dT' =1. (18)
Thus, we introduce the number of electrons in eshehl,
Nn, which can take on integer value between 0 arf2l 2 (
1), and using the wave functions Equation (18)temine
density Equation (1) as;
p(r) = 4”2 — Y anan(T) f p(Manridr =¥, Ny =N .. (19)
In writing this expression, we have used the idgnti

l

2l+1

D W@ ==

m=-1
In the same spirit, the energy functional Equatian be
generalized to open-shell situation as;

£ = 1 [ + 2 ar

X (MX, T Nd3rd3r" ...

—R@I£Y) .. ()
(471')21'

So that many-body wave functions Equation (3.9

I L LOIEIEE TN T
This trial wave function is anti-symmetric undereth
interchange of the electron spins but is symmatrider
the interchange of their space coordinates. Itagspthe
Pauli principle, since it is anti symmetric unddret
interchange of all variables describing the twocktmns.
The normalization condition Equation (4) becomes.

fOO(RZ(r)dr =1 9)
While the energy Equation (1.1) becomes

2 2 —_ [ 2
E=L " (‘;_"*)2 dr + [ [- 2 + 40| pyamrar ... (10) [ “+3 (r)] p(r)Amridr + Ee (20a)
With ec;nuatior: (1.1) reduces to Wlth the exchange energy belng
p(r) = ZX#RZ(T)‘I-T[T'dT =2 (11) Eye = _iznlnl'anan'Zl;:U—l | [0 0 0] nlnl’ (20b)
And equation (1.5b) becomes In this expression, | is the mtegral
1dJ[ df 1 2 [ (0 g
r'—| = —4me?p (12) 2o =e? [ dr [T drRy(R, (D55 2ot Rut (R () (1)
r dr d‘r] .

Where r < and r > are the smaller and larger of r and r’
and the 3-j symbol vanishes whien I' + ) is odd.

z'r

R(r) =2 [Z;]E%e — (13)

Where: o is the Bohr radius. The energy Equation (12) is

then minimized as a function of Z* to find an apgmate
to the wave function and energy.

7=z E——[Zsz+ . (14)

Lagrange multipliers,,; are introduced to keep each of the
radial wave function normalized and, after someelatg,
we have

16’ 256 §*od? | 1a+Dp ze? _
In carrying out this minimization, it is amusingriote that [_EP e~ T = Sn'] R (r) = —Fyu(r,)....(222)
the kinetic energy scales asZZWhich all of the potential With; ,
energies scale as Z*, so that, at the optimal & kinetic () = _fzn,l Ny Ry () 5 ll[o 0 0] T -+ (1.22b)
energy is — %2 of the potential. This is a speaifise of a (o)
more general viral theorem pertaining to the Harffeck  J,,, = ,M =5[] Ry (R @) dr + 12 [ T{”dr’ ..... (22¢)

approximation (Ismail, 1992). See Step 1 below.

§(E—2¢ [ R?dr) =0 . (15) The eigen value equation (22a) can be seen to be
Where ¢ is a Lagrange multiplier to be determlned after @nalogous to Equation (17) for the two-electronbjem,
variation so that the solution is properly normediz The ~ €xcerpt that the exchange energy has introducedna n

standard techniques of variational calculus thed te locality (Fock potential) embodied in F and hasped
together the eigen value equations for each ofraiiéal

503

FUW Trends in Science & Technology Journal, www.ftstjournal.com
e-ISSN: 24085162; p-ISSN: 20485170; October, 2016 Vol. 1 No. 2 pp 502 - 508




Computation of Electronic Structure of an Atom...

wave functions; it is easy to show that these tguwagions
are equivalent when there is a single orbital with0. It is
useful to note that equation (22b, 22b) imply thiae
exchange energy can also be written as

Eex = 1/2 Yt Ny Iom Ry (r)Fy (r)dr, (23a)
And that, by multiplying Equation (20a) by,Rand
integrating we can express the single

Particle eigen value as (Ismail, 1992).

o [[dRu1? | 131+1) w 2
Ent = o Jo [[Tl] T R'le]errfo [_%+

*(r)| RZ,(r)F (r)dr...(23b)

Numerical analysis

For the numerical solution of the Hartree-Fock eiqus,
we must first adopt a system of units. For comparisith
experimental value, it is convenient to measurdealjths
in Angstroms and all energies in electron voltswé use

Step 4:

the constants,

bZ

— = 7.6359ev — 4% e2=14.409ev-A4,
m

Then the Bohr radius and Rydberg constants have their
correct values,

a =

y’ e’
0.52994; Ry = — = 13.595ev.
2a

me?

The attacks can be made through the following secpie
of steps:

Step 1:

Step 2:

Step 3:

Verify the algebra leading to the final equations
presented above for the two-electron system
(Equations (10, 12, and 17)) and for the multi-
electron system (Equations (12, 20, 22)) have
proved the viral theorem that the kinetic energy is
-1, of the potential energy. This can be done by
imagining that the single-particle wave functions
of a solution to the Hartree-Fock equations are
subjected to a norm-preserving scaling
transformation,

Xq(r) = 7/ 2x (1) (24)
Where 1 is a dimensionless scaling parameter,
show that the total kinetic energy in Equation
scales as?, while all of the potential energies
scale ast. Since the energy at the Hartree-Fock
solution is stationary with respect to any variatio
of the wave functions.
Write a program to calculate the energy from
Equation (10) if R is known at all if the lattice
points. This will require writing a sub-routine tha
calculatesep by solving Equation (12) and then
evaluating suitable quadrature for the various
terms in Equation (19). Verify that the program is
working by calculating the energies associated
with the hydrogenic orbital Equation (13) and
comparing it with the analytical results
(remember to normalize the wave function by the
appropriate discretization of Equation (18).
Write a subroutine that uses the shooting method
to solve the radial equation for the lowest eigen
value and corresponding normalized wave
function R if the potential is given at the lattice
point. The zero boundary condition at large
distances can be takenas R (r =L) =0, where L is
the outer end of the lattice. (Greater accuracy,
particularly for weakly bound states, can be had
by imposing instead an exponential boundary
condition at the outer radius). Note that the radia
scale (i.e., R and the radial step size) should
change with the strength of the central charge.

Step 5:

Verify that the subroutine works by settipgand

0 and comparing, for Z = 2 and Z= 4, the

calculated wave function, eigen value, and energy
of the 1s orbital with the analytical hydrogenic

values.

Combine the subroutines developed in Steps 2
and 3 into a code that, given a value of Z, solves
the two electron Hartree-Fock equations of
iteration. An iteration scheme is as follows, the

organization into subroutines being obvious:

i) “Guess” an initial wave function, says the
hydrogenic one Equation (13) with the
appropriate value of Z*.

Solve Equation (12) for the potential
generated by the initial wave function and
calculated the total energy of the system
from Equation (19)

Find a new wave function and its eigen
value by solving Equation (19) and
normalizing according to Equation (9)
Calculate the new potential and new total
energy. Then go back to (iii) and repeat
(i) and (iv) until the total energy has
converged to within the required
tolerance.

At each iteration, the eigen value, the total eperg
and the three separate contributions to the energy
appearing in Equation (10) should be printed out;
a plot of the wave function is also useful for
monitoring the calculation. Note that the total
energy should decrease as the iterations proceed
and will converged relatively quickly to a
minimum. The individual contributions to the
energy will take longer to settle down, consistent
with the fact that it is only the total energy tlgt
stationary at the variational minimum, not the
individual components; at convergence, the viral
theorem discussed in Step 1 should be satisfied.
Try beginning the iteration procedure with
different single-particle wave functions and note
that the converged solution is still the same. Vary
the values of the lattice spacing and the boundary
radius,L, and the certain that the results are stable
under these changes.

Use the program to solve the Hartree-Fock
equations for central charges Z = 1-9. Compare
the total energies obtained with the experimental
values given in N = 2 column of Table 3 (These
binding energies, which are the negative of the
total energies, are obtained from the measured

i)

ii)

iv)

ionization potentials of atoms and ions);
comparing the results alsp with the wave
functions and associated variational energies

given by Equations 13 and 14. Note that both
approximations should give upper bounds to the
exact energy.

It shows that for Z = 1, the Hartree-Fock
approximation predicts that the H ion is unbound
in that its energy is greater than that off the H
atom and so it is energetically favorable to shed
the extra electron. As can be seen from Table 3,
this is not the case in the real world. In findthg
Z=1 solution, it is discovered that convergence is
quite a delicate business; it is very easy for the
density to change so much from iteration to
iteration that the lowest eigen value of the single
particle Hamiltonian becomes positive. One way
to alleviate this problem is to prevent the density
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from changing too much from one iteration to the

next, for example by averaging the new densityResults and Discussion

and the old following step iii) above. The computed value of the total kinetic energiedalt
Step 6: Modifies the two-electron program to treat potential energies, electron-electron energieshaxge

systems in which several orbitals are involved. Itenergies and the total energies of each of the sted

is easiest first modify the calculation of the tota shown in Table 1 (lteration 0 — 19). HARTREE-FOCK

energy for a given set of radial wave functions tosolutions of small atomic systems in the filling

include E,. This is most conveniently done by approximation; Hartree-ock solutions for small aitom

calculating and storing the,Fof Equation (22b) systems: Nuclear charge = 6.000, zstar = 5.067, Rmax

and using Equation (23). Because of the Fock(Angstroms) = 2.000, radial step (Angstroms) = Q@K

term, the Eigen value equations (22a) cannot bé1, Occupations of the states are: 2 2 2 All emergre in

treated by the shooting method we haveeV.

discussed. However, one scheme is to treat the F

calculated from the previous set of wave functionsTable 1: Total energies of each state (Iteratlon 019

as an inhomogeneous term in solving for the new Iteration O.. RSP

set of wave functions. For trial values of the  StateNocc Ktot  Ven vee  Vex Vot Etot

calculated from Equation (24) using the previous 15 2 252141-641.960 285.923 -90.984 -447.021 -194.881

set of wave functions, Equation (22) can be 25 2 68.715-180857141.035-27.404 -67.225 1490

solved as uncoupled inhomogeneous boundar 2 85703 -206.831 160,586 -16.851 -63.096  22.608

: ; otal 6 813.119-2059.295587.544-135.238-1606.989-793.870

value problems using the Green’s function

method of Equation (12); after normalization

according to Equation (18), the solutions serve asgienoce kiot ~ Ven  Vee  Vex  Viot  Etot

a new set of wave functions. The two-electron™1s™ 5 501535-585.033 256.602 -78.792 -407.222 205,688

systems can be used to check the accuracy of theps 2 39.240 -138.558 110.725 -20.741 -48.574 -9.334

modifications; for these systems it is found that 2p 2 60.102 -171.316 132.812 -13.231 -51.735  8.367

the exchange energy is — 1 of the direct inter-Total 6 601.753-1789.813500.140-112.764-1402.438-800.685

electron interaction energy and that the solutions

converge to the same results as those generated by

the code in Step 1 (Ismail, 1992). State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 193.484-574.589 239.612 -76.06 -411.307-217.823
2s 2 30.196-122.765 98.157 -18.712 -43.319 -13.124

Input 2p 2 48.588 -152.666 116.89 -11.697 -47.472 1.116
3D coordinates| Total 6 544.537-1700.580 454.66 -106.469-1352.389-807.852
of atomic nuclei

......... Iteration 3..............
State Nocc  Ktot Ven Vee Vex Vtot Etot
A 4 1s 2 194.049-575.535 231.135 -75.969 -420.368 -226.319
Initial guest Fock Matrix | 2s 2 29.356-121.359 95.243 -18.58 -44.696 -15.34
Molecular Orbitals p| Formation [€ 2p 2 45.162 -146.751 110.667 -11.288 -47.372 -2.209
(I-electron Vectors Total 6 537.135-1687.288437.045-105.836-1356.079-818.945
¢ .......... Iteration 4...........
Fock Matrix State Nocc  Ktot Ven Vee Vex Vtot Etot

1s 2 195.891-577.839 226.479-76.188 -427.548 -231.657
2s 2 30.136 -123.06 94.772-18.852 -47.14 -17.004

Diagonalization

2p 2 0.886 -139.233105.141-10.829 -44.921 -4.032
Calculate ¢ Total 6 533.833-1680.265426.393-105.87-1359.742-825.909
Properties
End SCE N lteration 5...........
Converge State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 197.442-579.769 225.146 -76.662 -431.245 -233.803

2s 2 31.006 -124.956 95.333 -19.105 -48.728 -17.661
2p 2 41,931 -141.247 105.613 -10.984 -46.618 -4.687

Fig. 1: A simplified algorithm flowchart illustrating the
Total 6 540.879-1691.943426.092-106.711-1372.562 331.684

Hartree-Fock method

InpUt parameters for the deSIQn State Nocc  Ktot Ven Vee Vex Vtot Etot

Z — Nuclear charge . 1s 2 198.162-580.663 225.132 -76.869 -432.4 -234.238
NOCC — number of electrons in each state (1s, 2s,2p) 55 5 3179 -126.33996.039 -19.285 -49.585 -17.796

DR - radial step size (Angstroms) 2p 2 43.035-143.289 106.617 -11.134 -47.806 -4.771
NITER — number of iterations Total 6 545.973-1700.583427.788-107.289-1380.083 -834.11
Outputs parameters

Ktot — total kineticenergy T .. Iteration 7...........

Ven - electron-nuclei State Nocc  Ktot Ven Vee Vex Vtot Etot
Vee — electron-electron energies 1s 2 198.405-580.965 225.389 -76.965 -432.541 -234.136
Vex — exchange energies 2s 2 32171 -127.041 96.489 -19.376 -49.928 -17.756
Vitot — total potential energy 2p 2 43.506 -144.144 107.155 -11.198 -48.188 -4.682

Total 6 548.163-1704.301429.034-107.539-1382.806-834.643

Etot — total energies
Vex — exchange energies

VtOt - tOtaI pOten'.:Ial energles StateNocc  Ktot Ven Vee Vex Vtot Etot
Etot — total energies
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1s 2 198.459-581.033 225.574 -76.988 -432.447 -233.988
2s 2 3231 -127.28996.687 -19.408 -50.010 -17.700
2p 2 43.592 -144.297 107.32 -11.211 -48.189 -4.597
Total 6 548.722-1705.239429.581-107.607-1383.266-834.544

1s 2 198.449-581.021 225.672 -76.981 -432.33 -233.881

State Nocc  Ktot Ven Vee Vex Vtot Etot

2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535
Total 6 548.495-1704.823429.685-107.586-1382.724-834.229
.......... Iteration 19...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.449-581.021 225.672 -76.981 -432.33 -233.881
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535

Total 6 548.495-1704.823429.686-107.586-1382.723-834.228

1s 2 198.46 -581.035 225.656 -76.988 -432.367 -233.907
2s 2 32.336 -127.333 96.744 -19.413 -50.003 -17.667
2p 2 43.556 -144.231 107.329 -11.207 -48.109 -4.553

Total 6 548.706-1705.199429.729-107.609-1383.078-834.373

.......... Iteration 10...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.454-581.027 225.679 -76.985 -432.333 -233.897
2s 2 32.328 -127.318 96.748 -19.411 -49.981 -17.653
2p 2 43.515-144.155 107.305 -11.202 -48.052  -4.537

Total 6 548.595-1705.001429.739-107.598-1382.867-834.271

.......... Iteration 11...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.45 -581.023 225.68 -76.982 -432.326 -233.875
2s 2 32.318 -127.299 96.741 -19.409 -49.966 -17.648
2p 2 43.494 -144.116 107.288-11.199 -48.027 -4.533

Total 6 548.524-1704.875429.708-107.59-1382.757-834.232

.......... lteration 12...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.449-581.021 225.676 -76.982 -432.327 -233.878
2s 2 32.312 -127.288 96.735 -19.407 -49.96 -17.648
2p 2 43.487 -144.103 107.28 -11.198 -48.021 -4.534

Total 6 548.497-1704.826429.692-107.587-1382.721-834.224

.......... Iteration 13...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.449-581.021 225.673 -76.981 -432.329 -233.88
2s 2 32.31 -127.28496.733 -19.407 -49.958 -17.648
2p 2 43.487 -144.102 107.279 -11.198 -48.021 -4.534

Total 6 548.491-1704.815429.686-107.586-1382.712-834.224

State Nocc  Ktot Ven Vee Vex Vtot Etot

1s 2 198.449-581.021 225.672 -76.981 -432.33 -233.881
2s 2 32.309 -127.283 96.732 -19.407 -49.957 -17.648
2p 2 43.488 -144.104 107.279 -11.198 -48.023 -4.535
Total 6 548.492-1704.817429.684-107.586-1382.719-834.227
.......... Iteration 15...........

State Nocc  Ktot Ven Vee Vex Vtot Etot

1s 2 198.449581.021225.672 -76.981 -432.33 -233.881
2s 2 32.309-127.283 96.732 -19.407 -49.958 -17.648
2p 2 43.48 -144.106107.28 -11.198 -48.024 -4.535

6

Total 548.493-1704.82429.684-107.586-1382.721-834.228

State Nocc  Ktot Ven Vee Vex Vtot Etot

1s 2 198.449-581.021 225.672 -76.981 -432.33 -233.881
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648
2p 2 43.489 -144.106 107.28 -11.198 -48.024 -4.535

Total 6 548.495-1704.822429.685-107.586-1382.723-834.229

.......... Iteration 17...........

State Nocc  Ktot Ven Vee Vex Vtot Etot
1s 2 198.449-581.021 225.672 -76.981 -432.33 -233.881
2s 2 32.309 -127.284 96.733 -19.407 -49.958 -17.648
2p 2 43.489 -144.107 107.281 -11.198 -48.024 -4.535

Total 6 548.495-1704.823429.685-107.586-1382.724-834.229

.......... Iteration 18...........
State Nocc  Ktot Ven Vee Vex Vtot Etot

Table 2: The total energies of neutral atoms calculat
with the relativistic Beit Pauli method by Fraga,
Karkowski and Saxena and with the HartreeFock-
Dirac formalism by Desclaux (Levente, 1991)

Atom Z Egr =3 Ep AER%  AEs%
He 2 286137 2.86169 2.86169 -0.01 0.002
Li 3 7.43269  7.43327  7.43273  -0.0005  0.007
Be 4 1457434 145752 14.57303  0.009 0.01
B 5 2453397 245350 24.52906  0.02 0.02
c 6 37.70068 37.6732 37.68866 0.03 -0.04
N 7 5442602 54.3229 54.40098  0.05 -0.14
o 8 74.85626 74.8172  74.80947 0.06 0.01

AE, = 1002875, AR, = 10022750

Er Ep
the relativistic correction energy;-E the non-relativistic HF
energy; s = Total energy

; E; = Resultant energy; &

Table 3: Binding energies (in eV) of small atomic

system by Ismail (1992)
2 3 4

A 5 6 7 8

1 334

2 78.88

3 198.04 203.43

4 37151 389.71 399.03

5 599.43 637.35 662.49 670.79

6 881.83 946.3 994.17 1018.53029.81

7 1218.76 1316.62 1394.07 1441.19 1471.09 1485.19

8 1610.23 1743.31 1862.19 1939.58 1994.47 2029.58 2043.19
9 2054.8 2239.052397.05 2511.27 2598.41 2661.05 2696.03

Table 4: The density as a function of (r) for different
states (1s, 2s, 2p)

Densities The distance (r)

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.00E-01 8.47E.00 3.91E-01 1.06E-01 9.18E+00
2.00E-01 7.15E.00 1.08E-01 5.31E-01 7.87E+00
3.00E-01 3.01E+00 6.24E-02 1.11E+00 4.43E+00
4.00E-01 9.83E-01 6.10E-01 1.63E+00 3.60E+00
5.00E-01 2.85E-01 1.38E+00 1.98E+00 4.00E+00
6.00E-01 7.81E-02 2.02E+00 2.15E+00 4.48E+00
7.00E-01 2.09E-02 2.40E+00 2.16E+00 4.65E+00
8.00E-01 5.60E-03 2.51E+00 2.06E+00 4.50E+00
9.00E-01 1.54E-03 2.40E+00 1.88E+00 4.09E+00
1.00E+00 4.46E-04 2.14E+00 1.65E+00 3.55E+00
1.10E+00 1.38E-04 1.80E+00 1.39E+00 2.93E+00
1.20E+00 4.59E-05 1.43E+00 1.12E+00 2.32E+00
1.30E+00 1.66E-05 1.08E+00 8.57E-01 1.74E+00
1.40E+00 6.35E-06 7.57E-01 6.16E-01 1.22E+00
150E+00 2.51E-06 4.87E-01 4.05E-01 7.85E-01
1.60E+00 9.64E-07 2.74E-01 2.32E-01 4.43E-01
1.70E+00 3.22E-07 1.21E-01 1.05E-01 1.97E-01
1.80E+00 6.67E-08 3.02E-02 2.64E-02  4.95E-02
1.90E+00 0.00E+00 0.00E+00 0.00E+00 2.37E-04

In connection with the total energies of atomscaaition
based on the Hartree-Fock method and calculatiseda
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on the Briet-Pauli procedure lead to the same msnlt trial function can give very good results for thatat
very good approximation as shown in Tables 1 and 2. energy in a variational calculation.

For the radial densities the Hartree-Fock methaggia  For the chosen atom (carbon) the total energy atate in
good picture of the electron distribution insidesaom by iteration of Table 1 is approximately the samea@smared
providing the one electron wave function. By promili  with that of Table 2 which Breit — Paul procedure tioe
accurate one-electron wave functions, the Hariek-f carbon atom. Slightly large number of iteratiomeéguired
method produces a quantity that is vitally importam  to get the approximate value of the total energptjEof
many molecular and solid state calculations, bssideeach of the states. Finally from Tables 1 and 2ether in
providing the explanation of such fundamental prope  the Hartree-Fock energy of atom as compared isdess
as the shell structure of atoms. only about one percent. Levente (1991) also obsetivis
The one-electron radial density in Fig. 1 showsin his work.

characteristic maxima and minima, demonstratingstied!

structure of atoms. The curves shows that in tlea &m  References

which a maximum occurs, there is high concentratbn Adhikari SK 1998. Variational Principles for the
electron density, that is, the electron density is Numerical Solution of Scattering Problemdlew

concentrated in shell; a shell is the volume bebwvieo York: Wiley, pp. 56-75.
spheres with radii that are slightly smaller andjés than  Dill D 2006. Many-Electron Atoms: Fermi Holes and
the radius at which a maximum is located. The giitgatf Fermi Heaps. Chapter 3.5, pp. 60-73.
shows the image of atom. This agrees with Geaal Doves R 1987. The Electronic Structure scofjuartz: A
(2003). periodic Hartree-Fock Calculatid. Chem. Phys86.
Froese F 1997The Hartree-Fock method for Atoms: A
- Numerical Approach.John Willey and Sons, New

York, p. 109

Gray CG, Karl G & Novikov VA 1996. A General Method
of Calculation for the STATIONARY STATES of any
Molecular SystemProc. Roy. SadLondon), pp. 542-

\ 544,
oo Gray CG, Karl G & Novikov VA 2003. Progress in
R e Classical and Quantum Variational Principles
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Fig. 1: The one—electronic radial desinties of the 1s, 28’ISmglr:y};i’c;klgIrggtanigésSanr::jﬂjA\;)lliézt?srggja;;liq8%ﬁe0t’

and 2p electrons in the carbon atoms (Z =G) Levente S 1991.The Electronic Structure of Atoms,
Physics Dept. Fordham University Bronx, New York,
pp. 115-238.

Nesbet RNK 2003Variational Principles and Methods in
Theoretical Physic§New York: Cambridge U.P.), p.
56.

Ring P 2000. The Nuclear — Many body problem,
Springer-Verlag, Berlin, Pp. 50

Tinkham M 2003. Group Theory and Quantum

show only that the total energy can be reproduciédl s Mechanics. Dover PublicationdSBN: 0486432475,

high accuracy with simple expressions for the wave pp. 23-32.

functions. The results do not mean that other diiesit Veilléard At %.006'| TThi !_ogic .Of SC'? Prg(r:]edqris, ind
like the total radial density, come out accurafedyn such omputational Techniques in Quantum Chemistry an

calculations. These results are just the demormtratf a l;{/lolecula:zPhysics, prczagieding of NATO ASI held at
theorem of quantum mechanics according to whicba p amsau ermany, p. )

0 1.80E+00 2.00€+00

The Hartree-fock method shows all atoms have theesa
image, that is, all atoms show the characteristaxima
and minima in their densities. The maxima signife t
presence of shell in the electronic structure ofrat Gray
et al (2003) also found this in his work.

Conclusion
However, these results, and similar results foeo#dtoms,

Appendix 1
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEDDBTCCCCCCCCCCC
¢ Hartree-Fock solution of small atomic systemthim
c filling approximation
c COMPUTATIONAL PHYSICS (FORTRAN VERSION)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOmDDUTCCCCCCCCCCC
CALL INIT Idisplay header screen, sepgrameters
5 CONTINUE Imain loop/ executece for each set of param
CALL PARAM Iget input from screen
CALL ARCHON Ifind the Hartree-Fock wafunctions
GOTO 5
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCUDDUTCCCCCCCe
SUBROUTINE ARCHON
C find the Hartree-Fock wave function for thedfied atom
CCCCeeeeeeeeeeeCCClCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCe
C Global variables:
INCLUDE ‘IO.ALL
INCLUDE ‘PARAM.P3

C Local variables:
REAL E(MAXSTT+1, 8) lall energies of all states

REAL FOCK (0: MAXSTP, MAXSTT) IFock terms
REAL RHO (0: MAXSTP) ldensity

REAL PSTOR (0: MAXSTP, MAXSTT) Iradli@ave function

REAL PHI (0: MAXSTP) lelectron potential
REAL ESP Isingle particle energy of state
INTEGER ITER literation index
INTEGER STATE Isingle particle state index
REAL ZSTAR loptimal effective nuclear charge
INTEGER DEVICE Icurrent graphing device
INTEGER ISTOP, ISTART Icurrent limits on iteration
INTEGER NLINES Inumber of lines written to screen
INTEGER SCREEN Isend to terminal
INTEGER PAPER Imake a hardcopy
INTEGER FILE Isend to a file

C Functions

INTEGER GETINT

DATA SCREEN, PAPER/1, 2,3/
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOmUNNTCCCCCCCCCCCCCCCCCCCCe
C begin iterations with a good guess

Mix=1. Ino old density to mix with new
ZSTAR=Z
CALL HYDRGN (ZSTAR, PSTOR) Ififdydrogenic wave functions

CALL ENERGY (E, FOCK, RHO, PSTOR) !and energy
C  optimal ZSTAR using virial theorem
ZSTAR=Z*E (NSTATE+1, IVTOT)/(2*E(NSTATE+IKTOT))

CALL HYDRGN (ZSTAR PSTOR) Ifincew hydrogenic wave functions
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